## **Pain-Free Melting Point Determination**

# James Lee, Ph.D. Stanford Research Systems



# Who is Stanford Research Systems?



- In business since 1980
- Full catalog is over 200 pages
- Famous for first digital lock-in amplifier
- Successful quadrupole mass spectrometer (RGA)
- Now makes 3 kinds of melting point apparatus



135.4 °C

Pearly Poar



# Introduction



Student grade melting point apparatus Integral RTD thermometer Microprocessor controlled temperature ramps PID gives fast preheats without overshoot Tube Tapper (integral capillary packing device) Easy to clean, maintain Price (single unit) : \$990

Price (single unit) : \$990 (Discounts will be given for orders in quantity)

## What is an RTD?

Resistance Temperature Detectors (RTDs) are simply materials whose resistivity changes as a function of temperature.



Taken from Omega's website : http://www.omega.com

## What is PID?

*Proprotional* – Make a correction term proportional to the error

*Integral* – Make a correction term that integrates the error with respect to time

*Derivative* – Make a correction term that differentiates the error with respect to time

Correction =  $Pe(t) + I \int e(t) dt + D de/dt$ (where e(t) is the error signal with respect to time, P, I, and D are constants)

## **Temperature Measurement**

## MEL-TEMP

Liquid in-glass (often Mercury) Accuracy typically +/- 1 degree Resolution typically 0.2 degree

## DigiMelt

RTD accuracy in this version is  $\pm$  0.5 degree C <200 C  $\pm$  0.8 degree C >200 C

Resolution is 0.1 degree C





## **Temperature Measurement**

#### MEL-TEMP

500 C is reachable, thermometer often only goes to 400 C

Thermometer is TAKE-able!

MelTemp is useless with a missing thermometer



## DigiMelt

Temperatures > 300 C disallowed

RTD is never missing

RTD is difficult to destroy



# **Temperature Control**

### **MEL-TEMP**

Open Loop Variac: No feedback Student is the controller Typical student is a poor controller Overshoot leads to fanning the block which leads to Hg spills

# A CONTRACTOR OF CO



#### **DigiMelt**

Full PID control with RTD feedback

Microprocessor lets students focus on their samples

Ramp rates of 0.5, 1, 2, 5 C

Oven turns off after 30 minutes of idle



## MelTemp delivers power, not a prescribed temperature



## DigiMelt has a preheat, hold, ramp and cool-down



# Sample Viewing

#### MEL-TEMP

Hard to see all three tubes

Light reflects from sample to eye via window, lens

Student must switch between viewing sample and viewing thermometer

## **DigiMelt**

Large lens allows view of three samples simultaneously

Student records critical temperatures (onset, meniscus, clear point) by touching keypad









# Using DigiMelt : Enter Settings



Boot up



Set Start Temp (40 to 250 C)



Set Rate (0.5 to 10 deg C / min)

Use the yellow keys to select settings Use the blue arrow keys to adjust settings



Set Stop Temp (up to 300 C)

## Using DigiMelt : Record Data



**Clear Point** 

## Touch button "3" to Record Clear Point



## Using DigiMelt : Retrieve Data



# **Packing Capillaries**



When students tap sample into capillaries, lots of capillaries end up on the floor, lots of capillaries are broken, wasted

### **DigiMelt**

Integral cell phone vibrator motor "Tube Tapper" Capillaries can be packed 3 at a time Students can get 3 samples with the same sample height



#### MEL-TEMP

Incandescent bulb will burn out

Mean time between failures is about 1000 hrs

Broken thermometer = \$200 (Roughly 25% of instrument cost)



White LED has >100,000 hours mean time between failures

RTD is well-protected





## MEL-TEMP

Capillary holder uses socket head cap screws or other screws



DigiMelt No tools required



#### MEL-TEMP

Capillary holder uses socket head cap screws or other screws



## DigiMelt Easy to remove broken capillaries



## MEL-TEMP

## Lens, window held with snap rings



## DigiMelt No tools required Easy to clean or replace lens



# Summary

#### **MEL-TEMP**

Students know there's a better way; MelTemp is like an oven at home with a 0-10 knob instead of a temperature setting

Wasted time Hard to use equipment Broken thermometers STUDENT FRUSTRATION



#### **DigiMelt**

Students focus on the sample: THE REAL EXPERIMENT Faster labs Safer labs Less waste Lower cost of ownership

